منابع مشابه
Generalizing Wallis' Formula
The present note generalizes Wallis’ formula, 2 = . 7 6 . 5 6 . 5 4 . 3 4 . 3 2 . 1 2 , using the EulerMascheroni constant g and the Glaisher-Kinkelin constant A: 2 ln 2 4 = 3 3 2 . 1 2 . 5 4 3 4
متن کاملWallis-Ramanujan-Schur-Feynman
One of the earliest examples of analytic representations for π is given by an infinite product provided by Wallis in 1655. The modern literature often presents this evaluation based on the integral formula 2 π ∫ ∞ 0 dx (x + 1) = 1 2 (
متن کاملBarnes-Hut-SNE
The paper presents an O(N logN)-implementation of t-SNE — an embedding technique that is commonly used for the visualization of high-dimensional data in scatter plots and that normally runs in O(N). The new implementation uses vantage-point trees to compute sparse pairwise similarities between the input data objects, and it uses a variant of the Barnes-Hut algorithm to approximate the forces be...
متن کاملWallis Inequality with a Parameter
We introduce a parameter z for the well-known Wallis’ inequality, and improve results on Wallis’ inequality are proposed. Recent results by other authors are also improved.
متن کاملTheory of Barnes Beta distributions
A new family of probability distributions βM,N , M = 0 · · ·N, N ∈ N on the unit interval (0, 1] is defined by the Mellin transform. The Mellin transform of βM,N is characterized in terms of products of ratios of Barnes multiple gamma functions, shown to satisfy a functional equation, and a Shintani-type infinite product factorization. The distribution log βM,N is infinitely divisible. If M < N...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Nature
سال: 1980
ISSN: 0028-0836,1476-4687
DOI: 10.1038/284288a0